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We show that in a factorized two-dimensional S-matrix having SU(V) (V > 2) symmetry the antiparticles (transforming
according to {}\7}) are bound states of particles and vice versa and argue that this S-matrix is the one of the chiral Gross—

Neveu model with screened U(1) charge and pseudocharge.

Since Zamolodchikov [1] wrote down the exact
S-matrix of the quantum sine-Gordon solitons a large
number of two-dimensional models [2—6] have been
understood. One usually refers to the corresponding
exact S-matrices as factorized owing to the fact that
the elastic multiparticle amplitude is a product of the
two-particle one, production being absent.

The chiral Gross—Neveu model [7] defined by the
lagrangian
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was suspected to belong to this class of models for a
long time, the main arguments coming from the simi-
larity to the ordinary Gross—Neveu model and from
classical [8,9] and quasi-classical [10] considerations.
But the 1/N-expansion used in ref. [7] shows spon-
taneous breaking of the U(1) chiral symmetry and the
associated Goldstone boson which of course cannot
exist in two-dimensional space—time [11].

In a recent paper [12] it was argued that one can
reconcile spontaneous mass generation with the ab-
sence of spontaneous symmetry breakdown in this
model. This is most easily seen in terms of the boson
representation for the fermion fields [13], where ¢ is
written in terms of exponentials of the U (V) currents
potentials.
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As a result of U(1) X U(1) symmetry one of those po-
tentials is a zero mass free field (say ¢). This means
that the field ¥ will describe infraparticles [14]. In or-
der to extract the real particle content of this model
one removes the exponentials of the unwanted mass-
less excitation obtaining a new field ¥ which does not
carry either U (1) chirality or the U(1) charge *!. This
field is expected to describe massive particles and
transforms according to SU(V). The Green’s functions
of Y are products of an explicitly computable factor
involving only the field ¢ times the Green’s functions
of . R

As a result of charge screening the field ¢ will satis-
fy the following identity (up to a Klein transformation
factor):
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In an interacting model with particle content this
means that the antiparticles (belonging to {V}) are
bound states of N—1 particles and vice versa. Further-
more, from the bosonized form of this model one sees
that there is a conjugation symmetry which implies
that the mass of those bound states coincides with the
mass of the original particles. It is apparent from eq.
(2) that the fields ¥ satisfy neither bose nor fermi
statistics but correspond rather to the massive version

*1 The latter property does not follow from the method used
in ref. {12] but is obvious from bosonization.
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of the fields introduced in ref. [15]. Since they are
non-local in the usual sense they provide an illustration
of Carruthers theorem [16].

In ref. [9] it was attempted for the first time to
construct the exact S-matrix of the model (1) using
the original U(¥) symmetry.

If this model really has a factorized S-matrix one
has to face the problem of formulating a scattering
problem having SU(N) and not U(#) symmetry. The
strategy to construct this S-matrix is to realize that the
fact that antiparticles are bound states of particles al-
lows us to transform this problem into a U(V) one
provided there is in the {N} channel a bound state of
N — 1 particles with the same mass as the original parti-
cle. Consistency further requires that the scattering
amplitudes of those bound states coincide with the
scattering amplitudes of the original particles.

The U(/V) problem was solved in ref. [17] to where
we refer the reader for details. One introduces particles
a(0) and antiparticles @(f) transforming according to
{V} and {N} of U(N) where 0 is the rapidity variable
related to the energy and momentum by py = mch 6,
py =msh 8, m is the common mass of the particles
and antiparticles. In ref. [17] it was shown that six
classes emerge as solutions of the requirement of fac-
torization. Since we have in mind to construct the par-
ticle—antiparticle amplitude from N-particle scattering
and since from factorization in this case it follows that
reflection is impossible it is clear that class II of ref.
[17] is the right candidate. In this case one has
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with A = 2/N. Notice the difference between eq. (3)
and formula (17) of ref. [17]. We have replaced A by
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—Ain egs. (3,4) such that we have introduced a bound
state in the particle—particle antisymmetric channel
(17 — u,) with mass

my =m sin 2n/N)/sin (7/N), (%)
and excluded the symmetric one (1 +u,).

To simplify matters let us first exemplify our calcu-
lation considering the case N = 3. Computing the resid-
uum of the amplitude (at the pole 85 = imA)
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one gets T (9) = t1 (), T () = t5(). The bound
state 3 that we have denoted by the capital letter =
must therefore be identified with the original antiparti-
cle. In this way one looses the U(1) part of U(3) and
this leads to a genuine SU(3) S-matrix.

For the general SU(V) case two points should be
noticed:

(a) As a consequence of two-particle bound state
(5) it follows from general arguments [18] that there
is an n-particle bound state with mass

_ msin (nw/N) _
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For N—1 particles in the {N} channel one has there-
foremy _; =m.
(b) Proceeding as in the SU(3) case one easily finds
that

(6)

1,..,N-1.

(o)
2(<P) QZ ) 2(¢)

Py (¢}
T ==t ,
1 (‘p) Ql (w) 1 (30)
where Py 5(¢) and Q4 ;(y) are polynomials. Since
T (y), T, () are by themselves class II scattering am-
plitudes it follows from ref. [17] that T (¢) = £ (¢),



Volume 82B, number 2

T () = t5 (), which proves again the desired result
that the {¥} bound state T is the antiparticle of the
original particle.

We remark that using the identification provided
by eq. (2) one finds that class II [17] for N =2 also
leads to a SU(2) symmetry. As noted in ref. [6] the
correspondence with the sine-Gordon solitons is #;
=t — r,where t and r are the transmission and reflec-
tion amplitudes of the soliton—antisoliton scattering.

In a future paper we plan to improve our confidence
that this S-matrix belongs to the chiral Gross—Neveu
model by an explicit perturbation check.

V.K. thanks for discussions with Peter Weisz. We ac-
knowledge several discussions with Bert Schroer.
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