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We show that in a factorized two-dimensional S-matrix having SU(N) (N > 2) symmetry the antiparticles (transforming 
according to {N~) are bound states of particles and vice versa and argue that this S-matrix is the one of the chiral Gross- 
Neveu model with screened U (1) charge and pseudocharge. 

Since Zamolodchikov [1 ] wrote down the exact 
S-matrix of  the quantum sine-Gordon solitons a large 
number of  two-dimensional models [2 -6 ]  have been 
understood. One usually refers to the corresponding 
exact S-matrices as factorized owing to the fact that 
the elastic multiparticle amplitude is a product of the 
two-particle one, production being absent. 

The chiral Gross-Neveu model [7] defined by the 
lagrangian 

N 

-~=i~  ~'~@i 
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+ 2 L\i= 1 -- _ ~")' ~i ' 

was suspected to belong to this class of  models for a 
long time, the main arguments coming from the simi- 
larity to the ordinary Gross-Neveu model and from 
classical [8,9] and quasi-classical [10] considerations. 
But the 1/N-expansion used in ref. [7] shows spon- 
taneous breaking of  the U(1) chiral symmetry and the 
associated Goldstone boson which of  course cannot 
exist in two-dimensional space-t ime [I 1 ]. 

In a recent paper [12] it was argued that one can 
reconcile spontaneous mass generation with the ab- 
sence of  spontaneous symmetry breakdown in this 
model. This is most easily seen in terms of  the boson 
representation for the fermion fields [13], where ~O is 
written in terms of  exponentials of  the U (N) currents 
potentials. 

As a result of  U( I )  × U(1) symmetry one of those po- 
tentials is a zero mass free field (say 4). This means 
that the field @ will describe infraparticles [14]. In or- 
der to extract the real particle content of this model 
one removes the exponentials of  the unwanted mass- 
less excitation obtaining a new field ~ which does not 
carry either U (1) chirality or the U(1) charge ,1.  This 
field is expected to describe massive particles and 
transforms according to SU(N). The Green's functions 
of ff are products of  an explicitly computable factor 
involving only the field ~ times the Green's functions 
of 4. 

As a result of  charge screening the field ~ will satis- 
fy the following identity (up to a Klein transformation 
factor): 

1 ~] l~f2 . . .~]N_ 1 (2) ~]- - ( N -  1)! eih ""]N-I 

In an interacting model with particle content this 
means that the antiparticles (belonging to {AT}) are 
bound states of  N -  1 particles and vice versa. Further- 
more, from the bosonized form of this model one sees 
that there is a conjugation symmetry which implies 
that the mass of  those bound states coincides with the 
mass of  the originalparticles. It is apparent from eq. 
(2) that the fields @ satisfy neither bose nor fermi 
statistics but correspond rather to the massive version 

#1 The latter property does not follow from the method used 
in ref. [ 12] but is obvious from bosonization. 
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of  the fields introduced in ref. [15]. Since they are 
non-local in the usual sense they provide an illustration 
of Carruthers theorem [16]. 

In ref. [9] it was a t tempted for the first time to 
construct the exact S-matrix of  the model (1) using 
the original U(N) symmetry.  

If this model really has a factorized S-matrix one 
has to face the problem of  formulating a scattering 
problem having SU(N) and not U(N) symmetry.  The 
strategy to construct this S-matrix is to realize that the 
fact that antiparticles are bound states of particles al- 
lows us to transform this problem into a U(N) one 
provided there is in the (N~} channel a bound state of 
N -  1 particles with the same mass as the original parti- 
cle. Consistency further requires that the scattering 
amplitudes of those bound states coincide with the 
scattering amplitudes of  the original particles. 

The U(N) problem was solved in ref. [17] to where 
we refer the reader for details. One introduces particles 
a(8)  and antiparticles 6(8)  transforming according to 
{N) and (N~} of  U(N) where 8 is the rapidity variable 
related to the energy and momentum by P0 = inch 8, 
Pl = rash 8, m is the common mass of  the particles 
and antiparticles. In ref. [17] it was shown that six 
classes emerge as solutions of  the requirement of  fac- 
torization. Since we have in mind to construct the par- 
t icle-antiparticle amplitude from N-particle scattering 
and since from factorization in this case it follows that 
reflection is impossible it is clear that class II of  ref. 
[17] is the right candidate. In this case one has 

{6 (82) T(81)[0¢(81)/3 (82)) 

= U 1 (~P)6c~V3~a + u2(~0)6c~a 3~a , 

(~-(82) T( 81) I 0~(81)~(8 2)} 

= t I (so)a~.ra~ + t2(~0)6~a.r~,  

where so = (81 - 82)/i7r and 

P(1/2 + so/2) P(1/2 - X / 2 - 9 / 2 )  
tl  @) = ~ i / 2  "so/2) p(1/2  - X / 2  + ~o/2) ' 

(3) 
t2(so ) = [--)t/(1 -- SO)] tl(so), 

P(1 - so/2) P(so/2 - X/2) 
Ul(so) = P(1 - ~ p / 2 - X / 2 )  P(~o/2) ' 

(4) 
u2 (so) = (--~t/so)u 1 (so), 

with X = 2/N. Notice the difference between eq. (3) 
and formula (17) of  ref. [17]. We have replaced X by 

- X  in eqs. (3,4) such that we have introduced a bound 
state in the particle-particle antisymmetric channel 
(u 1 - u2) with mass 

m 2 = m sin (27r/N)/sin Or/N) ,  (5) 

and excluded the symmetric one (u 1 + u2). 
To simplify matters let us first exemplify our calcu- 

lation considering the case N = 3. Computing the resid- 
uum of  the amplitude (at the pole 012 = iTr~k) 

2-1/2 e k&t~ 2-1/2 e~13 a 

X (~,(83)~(82)&(81)[ot(O1)(J(82)T(83))  

= -- -~(U 1 (812) -- U2(812)) 

X {[2u 1 (813)u 1 (823) + u 1 (813)u2(023)  

+ u2(813)Ul  (823) - u2(813)u2(823  )] ~1~£ ~'r'~ 

- -  [U 1 (813)U2(823) + u2(813)U 1 (823) 

- -  U2(813)U2(023)] 6:~y6~+), 

which we will call 

(T(8 2) ~ (81)1~(81)') '(02)) 
(6) 

= T 1 (so)a~kav~ / + T 2 ( ~ ) f ~ v 6 ~ + ,  

one gets Tl(~0 ) = t 1 (~0), T2(SO ) = t2(~0 ). The bound 
state 3 that we have denoted by the capital letter 
must therefore be identified with the original antiparti- 
cle. In this way one looses the U(1) part of  U(3) and 
this leads to a genuine SU(3) S-matrix. 

For the general SU(N) case two points should be 
noticed: 

(a) As a consequence of  two-particle bound state 
(5) it follows from general arguments [18] that there 
is an n-particle bound state with mass 

m sin (nrr/N) n = 1, ... , N -  1 . 
mn - s i n ( n / N )  ' 

For N -  1 particles in the {N-} channel one has there- 
fore raN_ 1 = rn. 

(b) Proceeding as in the SU(3) case one easily finds 
that 

P1 (SO) P2 (SO) 
TI(SO) = Q ~  tl(so), T2(~°) = Q ~  t2(~°), 

where P1,2(SO) and Q1,2G0) are polynomials. Since 
T 1 (~o), T 2 (SO) are by themselves class II scattering am- 
plitudes it follows from ref. [17] that T 1 (~o) = t 1 Go), 
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T 2 (¢) = t 2 (~o), which proves again the desired result 
that the (N~) bound state Z is the antiparticle of the 
original particle. 

We remark that using the identification provided 
by eq. (2) one finds that class II [17] f o r N  = 2 also 
leads to a SU(2) symmetry. As noted in ref. [6] the 
correspondence with the sine-Gordon solitons is t 1 
= t - r, where t and r are the transmission and reflec- 
tion amplitudes of the sol i ton-ant isol i ton scattering. 

In a future paper we plan to improve our confidence 
that this S-matrix belongs to the chiral Gross-Neveu 
model by an explicit perturbation check. 

V.K. thanks for discussions with Peter Weisz. We ac- 
knowledge several discussions with Bert Schroer. 
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